Murine Tim-1 is excluded from the immunological synapse
نویسندگان
چکیده
The interaction between T cells and APCs bearing cognate antigen results in the formation of an immunological synapse (IS). During this process, many receptors and signaling proteins segregate to regions proximal to the synapse. This protein movement is thought to influence T cell function. However, some proteins are transported away from the IS, which is controlled in part by ERM family proteins. Tim-1 is a transmembrane protein with co-stimulatory functions that is found on many immune cells, including T cells. However, the expression pattern of Tim-1 on T cells upon activation by APCs has not been explored. Interestingly, in this study we demonstrate that the majority of Tim-1 on activated T cells is excluded from the IS. Tim-1 predominantly resides outside of the IS, and structure/function studies indicate that the cytoplasmic tail influences Tim-1 polarization. Specifically, a putative ERM binding motif (KRK 244-246) in the Tim-1 cytoplasmic tail appears necessary for proper Tim-1 localization. Furthermore, mutation of the KRK motif results in enhanced Tim1-mediated early tyrosine phosphorylation downstream of TCR/CD28 stimulation. Paradoxically however, the KRK motif is necessary for Tim-1 induced NFAT/AP-1 activation and co-stimulation of cytokine production. This work reveals unexpected complexity underlying Tim-1 localization and suggests potentially novel mechanisms by which Tim-1 modulates T cell activity.
منابع مشابه
T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases.
CD8(+) CTLs are adept at killing virally infected cells and cancer cells and releasing cytokines (e.g., IFN-γ) to aid this response. However, during cancer and chronic viral infections, such as with HIV, this CTL response is progressively impaired due to a process called T cell exhaustion. Previous work has shown that the glycoprotein T cell Ig and mucin domain-containing protein 3 (Tim-3) play...
متن کاملAnergic CD4+ T cells form mature immunological synapses with enhanced accumulation of c-Cbl and Cbl-b.
CD4(+) T cell recognition of MHC:peptide complexes in the context of a costimulatory signal results in the large-scale redistribution of molecules at the T cell-APC interface to form the immunological synapse. The immunological synapse is the location of sustained TCR signaling and delivery of a subset of effector functions. T cells activated in the absence of costimulation are rendered anergic...
متن کاملCentrosome-intrinsic mechanisms modulate centrosome integrity during fever
The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders...
متن کاملCD28 signals in the immature immunological synapse.
T cell recognition of peptide-MHC complexes on APCs results in the aggregation of TCRs at a central supramolecular activation complex (c-SMAC) within a mature immunological synapse. T cells require a second "costimulatory" signal for activation, the most important of which, for naive T cells, is from CD28. However the time at which CD28-derived signals are induced relative to c-SMAC formation i...
متن کاملCTLA-4 differentially regulates the immunological synapse in CD4 T cell subsets.
Primary murine Th1 and Th2 cells differ in the organization of the immunological synapse, with Th1 cells, but not Th2 cells, clustering signaling molecules at the T cell/B cell synapse site. We sought to determine whether differential costimulatory signals could account for the differences observed. We found that Th2 cells express higher levels of CTLA-4 than Th1 cells, and demonstrated that Th...
متن کامل